
 1

Algorithmic Sustainable Design: The Future of Architectural
Theory.

Nikos A. Salingaros

University of Texas at San Antonio

Lecture 5
5.1. Architectural harmony.

5.2. Alexander’s theory of centers.
5.3. Design as computation.

5.4. Computational reducibility.

5.1. Architectural harmony

Compute the architectural harmony
• GOAL OF COMPUTATION: improve coherence of the design by successive steps
• Mathematical model of “harmony” given in my book “A Theory of Architecture”
• Harmony estimates density of symmetries, connections, scaling coherence, universal

scaling, universal distribution, etc.

 2

San Miniato al Monte, Florence

Estimate the harmony
• Reflectional symmetries on all scales = 2/2
• Translational and rotational symmetries on all scales = 2/2
• Scaling symmetries = 1/2
• Geometrical connections = 2/2
• Color harmonization = 1/2

 3

• Sum to get total harmony = 80%

Method of estimation
• Simplest estimate for each property seen in obvious design characteristics:
• NONE = 0
• SOME, NOTICEABLE = 1
• A GREAT DEAL = 2
• Each of the 5 components of the architectural harmony adds up to give a percentage

measure

Translational symmetries

 4

Scaling symmetries

5.2. Christopher Alexander’s theory of centers

A “center” as a focus

 5

• Basic notion describing the ordering process in nature (and in architecture)
• The geometry of mutually reinforcing focal points
• Independent from patterns already obtained via interaction between geometry and

social structure

Recursive points of focus (circles) in the Sierpinski gasket

Focus and condensation in fractals
• Self-similarity and the universal distribution require that the details in fractals are not

uniformly distributed
• Smaller scales focus in particular regions of a fractal where subdivision occurs

The theory of centers

• A “center” is a visual field that is the focus of a region
• The region that focuses on a “center” can be of any size
• Centers help to tie the space together by reinforcement

 6

• Recursion leads to fractal properties

Centers — structure-void duality
• Two types of centers: “defined” and “implied” (my own terminology)
• Either a well-defined structure in the middle is surrounded by a looser boundary, or a

void is surrounded by a structured boundary
• Mathematically, these two types are dual to each other

Figure-ground duality

A. “Defined” or “explicit” centers
• A region in which something right in the middle focuses the structure
• The focal point draws attention to the actual center of a region
• Examples: fountain or sculpture in the middle of plaza; window or door centered in the

middle of a wall; light fixture in the center of a ceiling; medallion in paving

 7

Medallion is focal point of ceiling design

 8

Window is focal point of plain wall

B. “Implied” or “latent” centers
• A region that focuses on its central point, but where the middle is empty
• Surrounding structure is helping to focus attention towards the interior
• This is a boundary effect — the boundary is focusing on the implied center
• Examples: courtyard enclosed by decorated walls; cloister; decorated arch

 9

Highly ornamented window frame focuses on center

 10

Monumental arch focuses on passageway

Geometrical focus
• Both “defined” and “implied” centers are the foci for their surrounding structures
• “Defined” and “implied” centers can overlap, thus helping each other
• In a coherent design, all the centers cooperate to reinforce each other
• Smaller centers combine to form larger centers — recursive property

Algorithm for generating centers

• Create both strong “defined” and “implicit” centers on a particular scale
• Place/create smaller centers so that they are nested within larger centers
• Use symmetries to make centers cooperate so they support each other geometrically

 11

• Success means that centers blend together

Adaptivity and asymmetry
• We are encouraging the formation of a high density of local symmetries, not an overall

symmetry
• ASYMMETRY arises from adaptation, usually seen on larger scales
• But there needs to be a reason for asymmetry, not just personal whim

Alexander’s first algorithm

• “Every time you create a center on a particular scale, make sure that it reinforces
the centers on the immediately smaller scale, and the centers on the immediately
larger scale”

• From Alexander’s “The Nature of Order”, Book 1

Alexander’s second algorithm
• “Begin by visualizing the whole. Then identify the scale that is the weakest, or is

missing. Create or intensify a center on that scale. The new center must reinforce
all existing centers on its own scale, as well as follow rule 1.”

• From Alexander’s “The Nature of Order”, Book 3

Example: find a weakness
• Problem: some part of your design feels wrong
• Don’t just adjust that piece, but look at that SCALE in the entire design
• Ask: WHAT IS THE BEST CENTER THAT REINFORCES THIS SCALE?
• Solution: implement that center, rather than adjusting the original faulty piece

Starting from weakness

• Usually start from the site, which may contain a weak system of centers
• Apply successful transformations
• Each step creates new centers, or reinforces existing weak centers
• All centers reinforce each other to create a coherent whole

The first set of Leitner diagrams

• Helmut Leitner uses simple visuals to grasp the center-generating transformations
• 1. Stepwise
• 2. Reversible
• 3. Structure-preserving
• 4. Design from weakness
• 5. New from existing

 12

1. Stepwise: Perform one step at a time

2. Reversible: Test design decisions using models;“trial and error”; if it doesn’t work,
undo it

3. Structure-preserving: Each step builds upon what is already there

4. Design from weakness: Each step improves coherence

 13

5. New from existing: Emergent structure combines what is already there into new form

Future software
• With time, we can program these rules
• Pattern recognition is a problem of major interest in computer intelligence and vision
• Model for estimating the coherence or “life” of structures is developed in “A Theory

of Architecture”

Incompleteness theorem
• Software will never substitute for a human designer
• “Living structure” is not possible just from a mathematical algorithm
• Not enough cognitive capacity!
• Computer algorithm is interesting and will be very useful for saving effort

Universal distribution merges to become a field effect

• Centers obey universal distribution: few large ones, some of intermediate size, many
smaller ones

• Achieving harmony, however, blurs the identity of each center
• Coherence is a “field effect” — the secret of our greatest architecture

5.3. Design as computation

Sequence of steps

• Christopher Alexander views successive steps of adaptive design as steps in a complex
computation

• Take initial condition as defined by the site, and by successive steps transform it into
the final coherent design

• Computation of finite number of steps

Algorithms are recursive
• Algorithm is repeated until a desired level of harmony in achieved, or until the

resources run out

 14

• With each succeeding step, coherence of total design is improved
• Next step locates (makes obvious) new bottleneck to coherence

What is our algorithm?

• Alexander’s first and second algorithms
• 1. Identify the weakest or missing center that forms a bottleneck in the harmony of the

configuration
• 2. Intensify that center
• 3. Act both locally and globally

… but there are more

• These are just two of several algorithms acting together
• More process principles are needed for computation
• Process concepts are not yet as well developed as structural concepts
• Refer to Leitner’s first set of diagrams

What are the constraints?

• 1. Brief of project (a) — functions
• 2. Brief of project (b) — human needs
• 3. Biophilic considerations — human feelings of wellbeing
• 4. Patterns from a Pattern Language
• 5. Connecting to the surroundings

Patterns as complex socio-geometric “centers”

• Socio-geometrical ways of behavior
• Repeated rediscovery of useful configurations in buildings and cities
• Classified in Alexander’s book: “A Pattern Language”
• Come from participatory design
• Not a pure geometrical concept

What are the programming tools?

• 1. Alexander’s 15 fundamental properties: provide the “code” in which the
algorithm is written and implemented (next lecture)

• 2. Process principles: to be developed more
• 3. Connecting concepts: universal scaling, universal distribution, wide boundaries,

architectural harmony, centers, etc.

Goal of computation

 15

• Goal is not what one would expect!
• Algorithm does not compute the typology of the building (e.g. house)
• Algorithm computes harmony, and each step proceeds by improving the harmony
• Function of building lies in the constraints!

Formal decomposition

• Algorithm broken up into specific computational loops (in theory)
• But this decomposition does not even touch the implementation problems!
• How do we achieve “living structure”?
• Not only geometrical harmony
• Need to incorporate patterns

High-level description

• Algorithm: larger main loop computes architectural harmony
• Several nested secondary iterative loops act as constraints:
• — project brief; patterns from “A Pattern Language”; universal scaling; universal

distribution…

Non-adaptive architectural design
• A drawing based on images has nothing to do with an adaptive building
• An adaptive design must be computed!
• Human mind is the best pattern computer
• The number of computations is proportional to the complexity of the desired result
• There can be no shortcuts to final form

Most design is memory-based

• No computation at all
• Retrieval from a memory bank
• Even if architect is convinced he/she is being totally innovative, design is usually

coming out of subconscious memory
• Harmony-seeking computations are rarely applied by architects in the industrial world

Good and bad memory

• Stored proven patterns are good
• Evolved over generations, tested and survived by adaptive selection
• But recycling of faulty design patterns gives bad designs
• Therefore: need periodic checks for the correctness of stored patterns

 16

Algorithmic checks
• Coherence and cooperation of different elements among different levels of scale
• Analogous to the coherence of a fractal
• Alexander’s fifteen fundamental properties help achieve living quality
• Global-local geometrical property

Emergence

• A very simple algorithm acting on the smallest scale generates a complex pattern with
long-range geometrical features

• Complex geometrical properties are emergent
• They are not obvious in the initial code

Alexander’s harmony-seeking process is more than emergent

• Emergence is only a two-way process
• Smaller components cooperate to create a larger whole — link small with large
• Harmony-seeking computations have an additional element — three-way process
• Whole interacts with an even larger external entity — small, with large, with outside

5.4. Computational reducibility

How much computation?

• General misunderstanding of how much work is required to create a complex system
• Design generates complex systems
• Everyone wants shortcuts
• Some shortcuts compromise system coherence and functionality

Computational processes

• All processes can be viewed as computations (Stephen Wolfram)
• Both human and natural processes
• Form develops by changing its state on various different levels
• Life continuously changes materials of organism, but maintains form template

Computational reducibility

• Adaptive systems evolve, with each step being a computation
• In simple physical systems, we don’t need to duplicate the amount of computational

effort, but can shortcut to final state — i.e., use a formula
• Simple case is COMPUTATIONALLY REDUCIBLE

�
Computational irreducibility

 17

• In irreducibly complex systems, there are no formulas for finding the final state
• Computation of final state requires the same effort as the system has gone through to

create itself — no reduction
• Stephen Wolfram’s “computational irreducibility”

The reducibility fallacy

• Design that is adaptive needs to compute a large number of steps
• The algorithm is usually recursive
• Such a process is COMPUTATIONALLY IRREDUCIBLE
• It is therefore impossible to make a top-down design so that it is adaptive

General procedure

• Decompose design problem into more tractable subunits or components
• Decomposition is dictated by experience
• Employ known methods (relying upon precedent) to evaluate subroutines
• Re-assemble partial results into final result
• Initial decomposition determines re-assembly

General procedure (cont.)

• Require selection criteria to be able to eliminate false positives
• How do you recognize false steps?
• Again, this relies upon precedent
• Process is successful if large scale structure is adaptive, not if it is strange or irrelevant

Conclusion: computational equivalence

• Classical and traditional architects follow part of our algorithm for design
• From computational irreducibility, all adaptive design algorithms are

computationally equivalent
• Any inequivalent algorithm cannot be adaptive

