Algorithmic Sustainable Design: The Future of Architectural
Theory.

Nikos A. Salingaros
University of Texas at San Antonio

Lecture 5
5.1. Architectural harmony.
5.2. Alexander’s theory of centers.
5.3. Design as computation.
5.4. Computational reducibility.

5.1. Architectural harmony

Compute the architectural harmony
* GOAL OF COMPUTATION: improve coherence of the design by successive steps
* Mathematical model of “harmony” given in my book “A Theory of Architecture”

* Harmony estimates density of symmetries, connections, scaling coherence, universal
scaling, universal distribution, etc.



San Miniato al Monte, Florence

Estimate the harmony
Reflectional symmetries on all scales = 2/2
Translational and rotational symmetries on all scales = 2/2
Scaling symmetries = 1/2
Geometrical connections = 2/2

Color harmonization = 1/2



Sum to get total harmony = 80%

Method of estimation
Simplest estimate for each property seen in obvious design characteristics:
NONE =0
SOME, NOTICEABLE =1
A GREAT DEAL =2

Each of the 5 components of the architectural harmony adds up to give a percentage
measure

typy Leib ERED EER

:

Translational symmetries

RO NNAEE

TN




Scaling symmetries

5.2. Christopher Alexander’s theory of centers

A “center” as a focus

SR
)

NJA N

i,
-,

\)

TR = S



® Basic notion describing the ordering process in nature (and in architecture)
® The geometry of mutually reinforcing focal points

® Independent from patterns already obtained via interaction between geometry and
social structure

Recursive points of focus (circles) in the Sierpinski gasket

Focus and condensation in fractals

¢ Self-similarity and the universal distribution require that the details in fractals are not
uniformly distributed

® Smaller scales focus in particular regions of a fractal where subdivision occurs

The theory of centers
® A “center” is a visual field that is the focus of a region
® The region that focuses on a “center” can be of any size

® (Centers help to tie the space together by reinforcement
p p g Y



® Recursion leads to fractal properties

Centers — structure-void duality
* Two types of centers: “defined” and “implied” (my own terminology)

* Either a well-defined structure in the middle is surrounded by a looser boundary, or a
void is surrounded by a structured boundary

* Mathematically, these two types are dual to each other

Figure-ground duality

A. “Defined” or “explicit” centers
* A region in which something right in the middle focuses the structure
* The focal point draws attention to the actual center of a region

* Examples: fountain or sculpture in the middle of plaza; window or door centered in the
middle of a wall; light fixture in the center of a ceiling; medallion in paving



Medallion is focal point of ceiling design



Window is focal point of plain wall

B. “Implied” or “latent” centers
A region that focuses on its central point, but where the middle is empty
Surrounding structure is helping to focus attention towards the interior
This is a boundary effect — the boundary is focusing on the implied center
Examples: courtyard enclosed by decorated walls; cloister; decorated arch



Highly ornamented window frame focuses on center



Monumental arch focuses on passageway

Geometrical focus
Both “defined” and “implied” centers are the foci for their surrounding structures
“Defined” and “implied” centers can overlap, thus helping each other
In a coherent design, all the centers cooperate to reinforce each other

Smaller centers combine to form larger centers — recursive property

Algorithm for generating centers
Create both strong “defined” and “implicit” centers on a particular scale
Place/create smaller centers so that they are nested within larger centers
Use symmetries to make centers cooperate so they support each other geometrically

10



Success means that centers blend together

Adaptivity and asymmetry

We are encouraging the formation of a high density of local symmetries, not an overall
symmetry

ASYMMETRY arises from adaptation, usually seen on larger scales

But there needs to be a reason for asymmetry, not just personal whim

Alexander’s first algorithm

“Every time you create a center on a particular scale, make sure that it reinforces
the centers on the immediately smaller scale, and the centers on the immediately
larger scale”

From Alexander’s “The Nature of Order”, Book 1

Alexander’s second algorithm

“Begin by visualizing the whole. Then identify the scale that is the weakest, or is
missing. Create or intensify a center on that scale. The new center must reinforce
all existing centers on its own scale, as well as follow rule 1.”

From Alexander’s “The Nature of Order”, Book 3

Example: find a weakness
Problem: some part of your design feels wrong
Don’t just adjust that piece, but look at that SCALE in the entire design
Ask: WHAT IS THE BEST CENTER THAT REINFORCES THIS SCALE?
Solution: implement that center, rather than adjusting the original faulty piece

Starting from weakness
Usually start from the site, which may contain a weak system of centers
Apply successful transformations
Each step creates new centers, or reinforces existing weak centers

All centers reinforce each other to create a coherent whole

The first set of Leitner diagrams
Helmut Leitner uses simple visuals to grasp the center-generating transformations
1. Stepwise
2. Reversible
3. Structure-preserving
4. Design from weakness
5. New from existing

11



1. Stepwise: Perform one step at a time

&

2. Reversible: Test design decisions using models; “trial and error”; if it doesn’t work,
undo it

u

3. Structure-preserving: Each step builds upon what is already there

A AKD
—— >

4. Design from weakness: Each step improves coherence

12



o8

. New from existing: Emergent structure combines what is already there into new form

Future software
With time, we can program these rules
Pattern recognition is a problem of major interest in computer intelligence and vision

Model for estimating the coherence or “life” of structures is developed in “A Theory
of Architecture”

Incompleteness theorem
Software will never substitute for a human designer
“Living structure” is not possible just from a mathematical algorithm
Not enough cognitive capacity!

Computer algorithm is interesting and will be very useful for saving effort

Universal distribution merges to become a field effect

Centers obey universal distribution: few large ones, some of intermediate size, many
smaller ones

Achieving harmony, however, blurs the identity of each center

Coherence is a “field effect” — the secret of our greatest architecture
5.3. Design as computation

Sequence of steps

Christopher Alexander views successive steps of adaptive design as steps in a complex
computation

Take initial condition as defined by the site, and by successive steps transform it into
the final coherent design

Computation of finite number of steps

Algorithms are recursive

Algorithm is repeated until a desired level of harmony in achieved, or until the
resources run out

13



With each succeeding step, coherence of total design is improved

Next step locates (makes obvious) new bottleneck to coherence

What is our algorithm?
Alexander’s first and second algorithms

1. Identify the weakest or missing center that forms a bottleneck in the harmony of the
configuration

2. Intensify that center
3. Act both locally and globally

... but there are more
These are just two of several algorithms acting together
More process principles are needed for computation
Process concepts are not yet as well developed as structural concepts

Refer to Leitner’s first set of diagrams

What are the constraints?
1. Brief of project (a) — functions
2. Brief of project (b) — human needs
3. Biophilic considerations — human feelings of wellbeing
4. Patterns from a Pattern Language

5. Connecting to the surroundings

Patterns as complex socio-geometric “centers”
Socio-geometrical ways of behavior
Repeated rediscovery of useful configurations in buildings and cities
Classified in Alexander’s book: “A Pattern Language”
Come from participatory design

Not a pure geometrical concept

What are the programming tools?

1. Alexander’s 15 fundamental properties: provide the “code” in which the
algorithm is written and implemented (next lecture)

2. Process principles: to be developed more

3. Connecting concepts: universal scaling, universal distribution, wide boundaries,
architectural harmony, centers, etc.

Goal of computation

14



Goal is not what one would expect!

Algorithm does not compute the typology of the building (e.g. house)

Algorithm computes harmony, and each step proceeds by improving the harmony
Function of building lies in the constraints!

Formal decomposition
Algorithm broken up into specific computational loops (in theory)
But this decomposition does not even touch the implementation problems!
How do we achieve “living structure”?
Not only geometrical harmony

Need to incorporate patterns

High-level description
Algorithm: larger main loop computes architectural harmony
Several nested secondary iterative loops act as constraints:

— project brief; patterns from “A Pattern Language”; universal scaling; universal
distribution...

Non-adaptive architectural design
A drawing based on images has nothing to do with an adaptive building
An adaptive design must be computed!
Human mind is the best pattern computer
The number of computations is proportional to the complexity of the desired result
There can be no shortcuts to final form

Most design is memory-based
No computation at all
Retrieval from a memory bank

Even if architect is convinced he/she is being totally innovative, design is usually
coming out of subconscious memory

Harmony-seeking computations are rarely applied by architects in the industrial world

Good and bad memory
Stored proven patterns are good
Evolved over generations, tested and survived by adaptive selection
But recycling of faulty design patterns gives bad designs

Therefore: need periodic checks for the correctness of stored patterns

15



Algorithmic checks
Coherence and cooperation of different elements among different levels of scale
Analogous to the coherence of a fractal
Alexander’s fifteen fundamental properties help achieve living quality

Global-local geometrical property

Emergence

A very simple algorithm acting on the smallest scale generates a complex pattern with
long-range geometrical features

Complex geometrical properties are emergent

They are not obvious in the initial code

Alexander’s harmony-seeking process is more than emergent
Emergence is only a two-way process
Smaller components cooperate to create a larger whole — link small with large
Harmony-seeking computations have an additional element — three-way process

Whole interacts with an even larger external entity — small, with large, with outside
5.4. Computational reducibility

How much computation?
General misunderstanding of how much work is required to create a complex system
Design generates complex systems
Everyone wants shortcuts

Some shortcuts compromise system coherence and functionality

Computational processes
All processes can be viewed as computations (Stephen Wolfram)
Both human and natural processes
Form develops by changing its state on various different levels

Life continuously changes materials of organism, but maintains form template

Computational reducibility
Adaptive systems evolve, with each step being a computation

In simple physical systems, we don’t need to duplicate the amount of computational
effort, but can shortcut to final state — i.e., use a formula

Simple case is COMPUTATIONALLY REDUCIBLE
U
Computational irreducibility

16



In irreducibly complex systems, there are no formulas for finding the final state

Computation of final state requires the same effort as the system has gone through to
create itself — no reduction

Stephen Wolfram’s “computational irreducibility”

The reducibility fallacy
Design that is adaptive needs to compute a large number of steps
The algorithm is usually recursive
Such a process is COMPUTATIONALLY IRREDUCIBLE
It is therefore impossible to make a top-down design so that it is adaptive

General procedure
Decompose design problem into more tractable subunits or components
Decomposition is dictated by experience
Employ known methods (relying upon precedent) to evaluate subroutines
Re-assemble partial results into final result

Initial decomposition determines re-assembly

General procedure (cont.)
Require selection criteria to be able to eliminate false positives
How do you recognize false steps?
Again, this relies upon precedent

Process is successful if large scale structure is adaptive, not if it is strange or irrelevant

Conclusion: computational equivalence
Classical and traditional architects follow part of our algorithm for design

From computational irreducibility, all adaptive design algorithms are
computationally equivalent

Any inequivalent algorithm cannot be adaptive

17



